Stabilization in probability of nonlinear stochastic systems with guaranteed region of attraction and target set

نویسندگان

  • Stefano Battilotti
  • Alberto De Santis
چکیده

We deal with nonlinear dynamical systems, consisting of a linear nominal part perturbed by model uncertainties, nonlinearities and both additive and multiplicative random noise, modeled as a Wiener process. In particular, we study the problem of finding suitable measurement feedback control laws such that the resulting closed-loop system is stable in some probabilistic sense. To this aim, we introduce a new notion of stabilization in probability, which is the natural counterpart of the classical concept of regional stabilization for deterministic nonlinear dynamical systems and stands as an intermediate notion between local and global stabilization in probability. This notion requires that, given a target set, a trajectory, starting from some compact region of the state space containing the target, remains forever inside some larger compact set, eventually enters any given neighborhood of the target in finite time and remains thereinafter, all these events being guaranteed with some probability. We give a Lyapunov-based sufficient condition for achieving stability in probability and a separation result which splits the control design into a state feedback problem and a filtering problem. Finally, we point out constructive procedures for solving the state feedback and filtering problem with arbitrarily large region of attraction and arbitrarily small target for a wide class of nonlinear systems, which at least include feedback linearizable systems. The generality of the result is promising for applications to other classes of stochastic nonlinear systems. In the deterministic case, our results recover classical stabilization results for nonlinear systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilization of Nonlinear Control Systems through Using Zobov’s Theorem and Neural Networks

Zobov’s Theorem is one of the theorems which indicate the conditions for the stability of a nonlinear system with specific attraction region. We have applied neural networks to approximate some functions mentioned in Zobov’s theorem in order to find the controller of a nonlinear controlled system whose law in a mathematical manner is difficult to make. Finally, the effectiveness and the applica...

متن کامل

Estimation of the Domain of Attraction of Free Tumor Equilibrium Point for Perturbed Tumor Immunotherapy Model

In this paper, we are going to estimate the domain of attraction of tumor-free equilibrium points in a perturbed cancer tumor model describing the tumor-immune system competition dynamics. The proposed method is based on an optimization problem solution for a chosen Lyapunov function that can be casted in terms of Linear Matrix Inequalities constraint and Taylor expansion of nonlinear terms. We...

متن کامل

Dwell-time controllers for stochastic systems with switching Markov chain

We study the problem of feedback stabilization of a family of nonlinear stochastic systems with switching mechanism modeled by a Markov chain. We introduce a novel notion of stability under switching, which guarantees a given probability that the trajectories of the system hit some target set in finite time and remaining thereinafter. Our main contribution is to prove that if the expectation of...

متن کامل

A new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem

Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2003